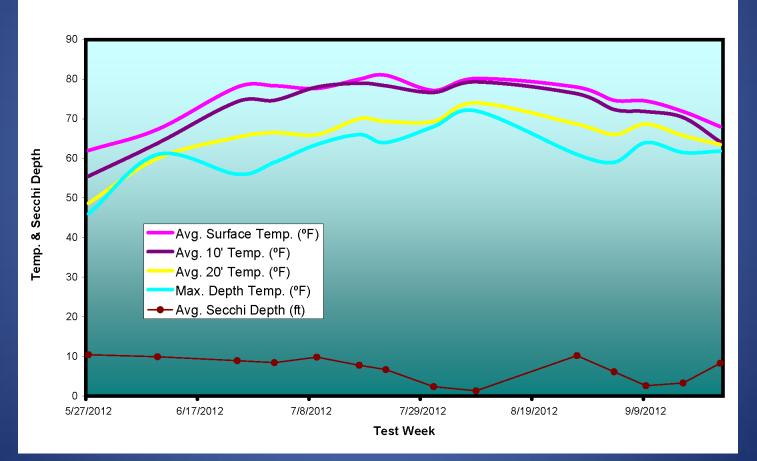
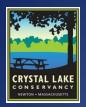


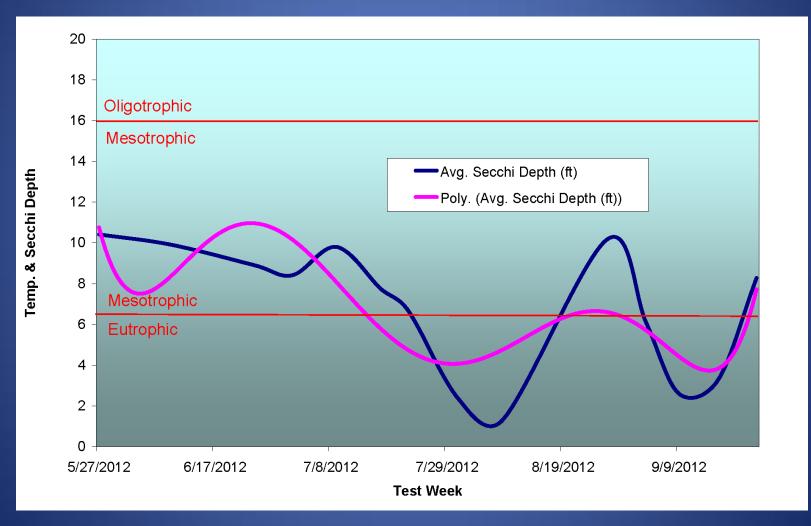
Crystal Lake Conservancy Third Annual Forum


"A lake is the landscape's most beautiful and expressive feature. It is Earth's eye; looking into which the beholder measures the depth of his own nature."

Henry David Thoreau

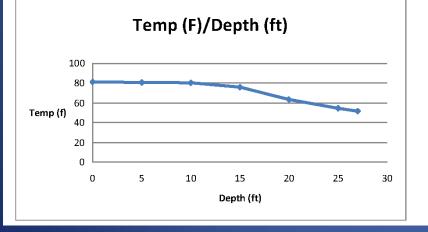


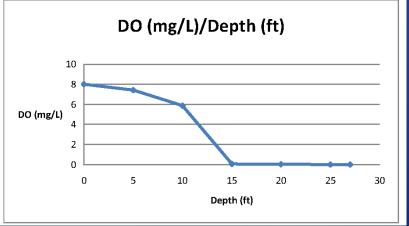
2012 CLC Temperature and Secchi Disk versus Time



October 25, 2012

2012 CLC Secchi Disk Visibility


October 25, 2012



AUGUST 2012 CLC WATER QUALITY TESTING

Temperature (°Fahrenheit), DO (Dissolved Oxygen) (mg/L) pH, ORP (Oxidation Reduction Potential) TDS (Total Dissolved Solids), Sal (Salinity) Conductivity (mS/cm[^]c and mS/cm)

				C-650	CRYSTAL LAKE								
Time:	9AM			Date:		8/16/2012							
Weather	: sunny												
	clear					Depth (ft)	0	5	10	15	20	25	27
						Temp (F)	81.19	80.84	80.44	75.87	63.4	54.55	51.65
Point	1	6				DO (mg/L)	8	7.43	5.88	0.07	0.02	0.01	0.01
						рН	9.65	9.6	8.93	6.82	6.37	6.35	6.64
	Depth:	29ft 2 in				ORP	62.7	67.4	80.2	-138.5	-191.4	-198	-209
	Secchi:	2ft 1in	(25in)			TDS (g/L)	0.187	0.187	0.183	0.187	0.19	0.181	0.214
						Sal	0.14	0.14	0.13	0.14	0.14	0.13	0.16
					Conductivity	(mS/cm^c)	0.288	0.288	0.281	0.287	0.293	0.291	0.341
					Conductiv	ity (mS/cm)	0.301	0.299	0.291	0.283	0.254	0.222	0.243

BEALS · ASSOCIATES

October 25, 2012

AUGUST 2012 CLC PHOSPHOROUS

Sampling Location: C-650, Newton, MA

TEST RESULTS:					
Test	<u>Unit</u>	<u>#1</u>	<u>#2</u>	<u>#3</u>	Method Reference
Total Phosphorous	mg/L	0.05	0.06	0.11	SM 4500 P-E
	PPB	50	60	110	
Mass. Cert. No.: M-MA-1100					

Average Phosphorus = 10 PPB

#1 = 5 ft below surface#2 = Thermocline#3 = Hypolimnion (bottom)

Trophic Class	Phosphorus Concentration (PPB)
Oligotrophic	0-12
Mesotrophic	12-24
Eutrophic	24+

October 25, 2012

AUGUST 2011 CLC PHOSPHOROUS

Fall 2011 Phosphorous Testing Sampling Location: Crystal Lake

<u>Total Phosphorous Test</u>	<u>Unit</u>	<u>#1</u>	<u>#2</u>	<u>#3</u>	<u>#4</u>	<u>#5</u>	<u>#6</u>	<u>#7</u>	<u>#8</u>	<u>#9</u>	<u>Bath</u> House
August 16, 2011	mg/L	<0.02	<0.02	<0.02	<0.02	<0.02	0.07	0.12	-	-	< 0.02
	PPB	-	-	-	-	-	70	120	-	-	-
August 24, 2011	mg/L	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-	-	0.13
	PPB	40	-	-	-	-	-	-	-	-	130
September 16, 2011	mg/L	0.1	<0.02	0.04	0.03	0.02	0.02	<0.02	-	-	< 0.02
	PPB	100	-	40	30	20	20	-	-	-	-

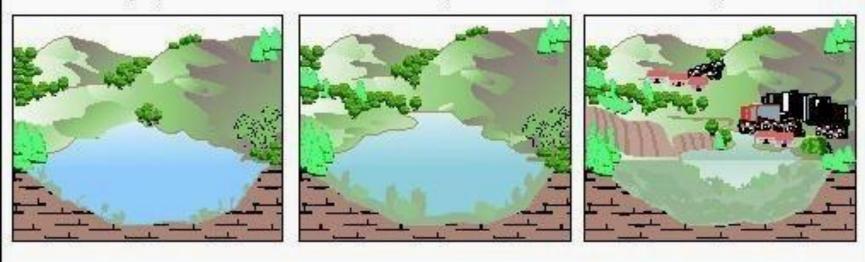
- 1&2 = Cronin's Cove
- 3 = Norwood
- 4 = Paul's Brook
- 5-7 = Levingston's Cove
- 8 = Lake Terrace
- 9 = Deep Water
- 10 = Bath House

Trophic Class	Phosphorus Concentration (PPB)
Oligotrophic	0-12
Mesotrophic	12-24
Eutrophic	24+

Evaluating the Trophic Status of Crystal Lake

Secchi Disk Comparison

- Recognizing Problems:
 - Algal Blooms
 - Nuisance aquatic plants
 - Poor drinking water
 - Disappearing fisheries
 - Low dissolved oxygen
 - Shoaling (sedimentation)


October 25, 2012

Lake Enrichment and Eutrophication

Oligotrophic

Mesotrophic

NATURAL EUTROPHICATION AND LAKE AGING occurs over centuries, and results from natural sources of nutrients and sediments

NATURAL: CENTURIES

CULTURAL EUTROPHICATION AND LAKE AGING occurs over decades, and results from human-induced urban runoff, sewage effluent, industrial waste, fertilizers, pesticides, and excess sediments

CULTURAL: DECADES

October 25, 2012

BEALS · ASSOCIATES

Eutrophic

2012 CLC BACTERIA RESULTS

2012 Bacteria Testing Results

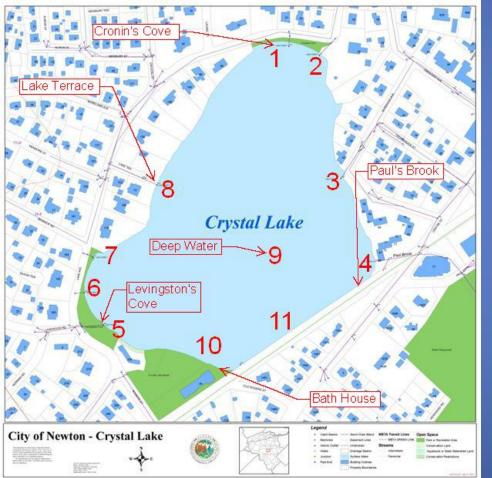
E. Coli MCL = 235 Enterococci MCL = 61

Sample Location	4/26/2012		5/16/2012		6/1	13/2012	7/19/2012	
	E. Coli	EnteroCocci	E. Coli	EnteroCocci	E. Coli	EnteroCocci	E. Coli	EnteroCocci
Outfall #1 - Cronin's Cove	<10	<10	60	30	510*	760*	<10	70 *
Outfall #5 - Levingston's Cove	<10	<10	20	60	130	380 *	50	60
Outfall #8 - Lake Terrace	<10	<10	120	30	130	520 *	<10	30
Location # 9 - Deep Water	<10	<10	20	10	10	10	60	10
Location #10 - Bath House	<10	<10	70	20	10	70*	50	90*
Outlet #4 - Paul's Brook	<10	<10	40	10	30	10	20	30

Sample Location	7/27/2012		8/16/2012		9/	5/2012	10/4/2012	
	E. Coli	EnteroCocci	E. Coli	EnteroCocci	E. Coli	EnteroCocci	E. Coli	EnteroCocci
Outfall #1 - Cronin's Cove	<10	<10	10	10	700 *	570 *	10	10
Outfall #5 - Levingston's Cove	30	<10	<10	<10	220	240*	10	<10
Outfall #8 - Lake Terrace	<10	<10	20	10	290 *	260 *	10	<10
Location # 9 - Deep Water	<10	<10	<10	<10	130	30	60	30
Location #10 - Bath House	<10	10	<10	10	70	150*	<10	30
Outlet #4 - Paul's Brook	<10	<10	10	<10	60	90 *	20	<10

2011 CLC BACTERIA RESULTS

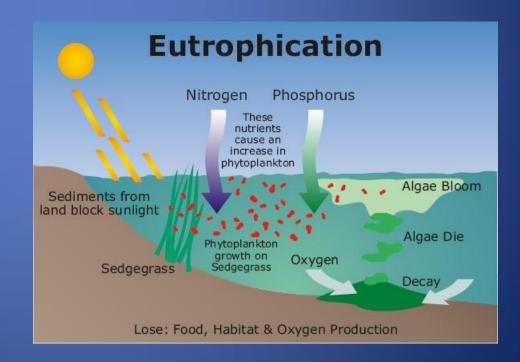
2011 Bacteria Testing Results


E. Coli MCL = 235

Enterococci MCL = 61

Sample Location	8/10/2011		8/24/2011		9/1	6/2011	9/23/2011	
	E. Coli	EnteroCocci	E. Coli	EnteroCocci	E. Coli	EnteroCocci	E. Coli	EnteroCocci
Outfall #1 - Cronin's Cove Sq.	110	170	55	180	40	30	10	10
Outfall #2 - Cronin's Cove Dock	170	350	110	110	30	10	10	10
Outfall #3 - Norwood	130	290	10	<10	10	<10	30	10
Outlet #4 - Paul's Brook	20	0	<10	<10	10	10	55	80
Outfall #5 - Levingston's Cove								
Blue Pipe	380	720	380	180	<10	<10	60	220
Outfall #6 - Levingston's Cove								
Retaining Wall	80	220	40	150	50	10	50	<10
Outfall #7 - Levingston's Cove								
End of Wall	240	640	10	10	10	10	80	20
Outfall #8 - Lake Terrace	230	260	100	90	60	20	30	<10
Location # 9 - Deep Water	50	120	<10	10	20	<10	10	10
Location #10 - Bath House	90	160	230	<10	<10	<10	220	<10

2012 CLC Testing Locations


Locations 1 - Cronin's Cove Location 4 – Paul's Brook Outlet Location 5 – Levingston's Cove Location 8 – Lake Terrace Location 9 – Deep Water Location 10 – Bath House

October 25, 2012

What Have We Learned?

- Crystal Lake is eutrophic;
 - Visibility below 2 ft and oxygen reduced to zero in lower levels
 - All lakes decline/die
 - Rate of decline is accelerated by nutrients

What Have We Learned?

- Crystal Lake is nutrient rich (phosphorus)
 - Data on phosphorus indicates high levels are present
 - Rapid increase over last year
 - High phosphorus is related to algae blooms
 - Source is unknown
 - Phosphorus present on street level prior to entering storm drains
 - Phosphorus is distributed differently than bacteria; settles to deeper levels

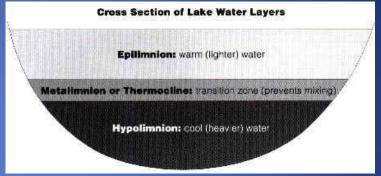
What Have We Learned?

- Bacteria is present and high in some areas
 - Data is consistent now for several years
 - Bacterial levels more concentrated in cove areas
 - Unpredictable when it occurs
 - Unknown direct source (dried manure?, other sources?)
 - High levels several times but has rapid dilution
 - High levels known to exist in street runoff prior to entering storm drains

What Can We Do?

- Watershed Residents: You <u>CAN</u> help preserve our lake
 - Decrease the amount of nutrients flowing from yards onto adjacent streets and into the lake
 - Reduce the amount of bacterial flow occurring on street level in yards, driveways and street – do not dump waste into drains!
 - Limit fertilizers and pesticides, reduce use of manure and composts, decrease pet waste, reduce stormwater and gutter runoff by infiltrating into soil, manage waterfowl, reduce construction debris
 - Create voluntary compliance
 - Explore regulations if situation is not improved

What Can We Do?


- Investigate the storm drains, sewer lines and do regular clean outs
 - Leakage from sewer systems can cause detergents and sludge to leak into groundwater supplies, increasing phosphorus load
 - The City has done substantial work to investigate and insure the patency of lines
- Investigate methods of draining street water into natural filtration areas before running into storm drains: sustainable drainage
 - Redirect storm drains to catch basins, retention basins, and detention tanks that won't drain directly to lake
 - Explore improved drainage systems swales, bioswales, permeable paving

October 25, 2012

What Can We Do?

- In-Lake Restoration Techniques
 - Hypolimnetic aeration: pump oxygen into the hypolimnion
 - Hypolimnetic withdrawal: use siphons to remove nutrient rich water

- Artificial circulation: aeration to expose water to oxygen (fountains, paddlewheels, air diffusers)
- Dilution: flush the lake to reduce algae, requires lots of water
- Nutrient diversion: may require expensive engineering to divert drains
- Dredging: use heavy hydraulic equipment to increase depth and remove sediment
- Nutrient inactivation: aluminum, iron, or calcium salts can inactivate phosphorus.
 Alum treatment (aluminum sulfate) can last eight or more years

What Can YOU Do?

HELP US SAVE **CRYSTAL LAKE** AND **KEEP IT HEALTHY** FOR YEARS TO COME

October 25, 2012